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DETERMINATION OF THE OPTIMUM COMPOSITION
AND PROGRAM OF TRAJECTORY MEASUREMENTS

N. N. Kozlov

ABSTRACT. The problem of selecting the effective
composition and program of trajectory measurements,
whose errors are random and independent, is discussed.
The concept of the density of measurements of a homo-
geneous composition (control) is introduced, and the
corresponding variational problems are formulated.

A proof is presented for the theorem of a non-
singular solution in these problems, when there are
limitations on the density and the total number of
measurements. Singular solutions are studied.

An algorithm is presented for finding the
non—-singular solution, making it possible to obtain
the optimum compositions and measurement programs
for specific problems. A solution is presented
to the problem of optimal distribution of radial
velocity measurements when determining the orbit of
an artificial satellite (AS) of Mars.

INTRODUCTION

The study [1] presents an algorithm for determining the forecasting
accuracy for the case when processing is done by the maximum probability
method. It is found that this algorithm may be used in a ballistic flight
forecast for selecting the effective composition and program of trajectory
measurements. The present article is devoted to this problem. The formula-
tion and solution of the problem are presented below for the optimum selection
of the composition and program of measurements, whose errors are assumed to

be random and independent.

Elfving [2] made the first study of this problem. In 1962 he investigated

this problem for the case of two parameters to be detarmined. It was assumed



that an arbitrarily large number of measurements may be made at a point. The
general theorem in a similar formulation of the problem was proven in 1969

by Yermov [3].

In contrast to these studies, this article considers the following
features of discrete trajectory measurements: the measurement mass and the

limitation on the measurement rate.

Consideration of these characteristics leads to the fact that the
extremum solution here essentially differs from the solution which corresponds

to theElfving-Yermov theorem (these solutions coincide at the limit).

In addition to the proof for the fundamental theorems, this study
presents an algorithm which can be used to obtain the optimum measurement

composition and program.

This algorithm is very cumbersome, and it may only be used for calcula- 16

tions on a computer.

At the end of the article, we investigate one example connected with
determining the optimum measurement program of the radial velocity when

determining the orbit of an artificial satellite of Mars.

I. Variational Problems on the Selection of the 17

Optimum Composition and Program of Trajectory Measurements

1. 1Initial Relationships

Let us assume that at the moment f;’ té P t;,measurements are made of
a certain function Y?g}=:Y?2;4a,éé,”,é;J to determine the parameters of

motion of a spacecraft. 0,, Q‘e,@m

We shall assume that the measurement errors are random, and are subject




to a multi-dimensional normal law of distribution, with zero mathematical

expectation and known variance. Assuming that the variance of the
measurements is constant in time and assuming that it equals unity, we

obtain the correlational matrix of the trajectory parameters [1]:

Ke=A"

(1.1)
where
L4
, - s GYEd. P, [ -
ﬂ=lﬂq'l, /{7—5; ok, g’ (of =425 ) (1.2)

The quantities A and /<0 are symmetrical square matrices.

In this case, the problem may be formulated in the following way. In
the time interval [g;é} we may perform J¢2 measurements, whose errors are
assumed to be random and independent. Let us distribute these measurements
for [O,’ f] in such a way that [/(QJ// (dispersion of the parameter@, ) is

a minimum.
Such a measurememt program may be called optimum.

This problem (without limitations on the number of measurements at a
point) for /77=2 was first investigated in [2]. The general theorem was
proven in [3]. The Elfving-Yermovtheorem states that the number of optimum
measurement subsets (i.e., points with different gradient vectors of the
measured function with respect to the parameters being determined) does not

exceed the number of parameters.

A solution of this problem is given below for mass measurements when

there is a limitation on the number of measurements per unit time.



2. Concepts of Measurement Density

Let us formulate a continuous analog of the matrix elements £ from

(1.2).

Let us assume W/f}-‘—' Y’(Lﬁ[?,, 02,... 0,,,) té‘[a’,;], which is a certain arbitrary
function to be measured, which is determined for each selection of the
parameters 0,, 02,... & . In addition, let us assume that for all #€ [0', b"]

there are isochronous derivatives which are continuous in Z:

¥, .
Lit)=-542, (et m) .3

With respect to matrix /(0 from (1.1), it is assumed that it is stable.
By stating that /(/@ is stable, we mean that small deviations of the matrix

elements 4 lead to small changes of the matrix elements /(0, which is

reciprocal to V4 [4].

Let us investigate two functions /;/("L}=L,{é} Lg(tj ( t,/ — fixed)
and /' (¢) for [a, ;J . According to definition, the function ¢‘J (t) given above
is a continuous function fe [0, f] The function /;/(t) , te[q)g’ is intro-

duced as a certain continuous analog of the measurement number. Thus, the
number of measurements equalling A(#,), performed in the interval [Q’, f,_],
corresponds to any moment of measurement time f""tz . In the intervals between
measurements, the function /V[t} is assumed to increase monotonically (in

a wide sense). Thus, in contrast to the actual number of measurements, the
function Mt) assumes all values in the permissible range of variation

in the number of measurements [O,NO]. It is also assumed that N(t)

zfe[a, 6°]has a limited change (the number of measurements is finite).

Let us divide the unknown interval [C.T, ;]by the points %o, o, ..., Z,, as
follows: Z‘;-’-0< Z‘/< fa...<f,,=é° , and let us examine the function %/ /tj
and /V/ZL} corresponding to this division.



Let us assume that #(#z) is the value of A(#) for the moment of division
fz , and % (§'z} is the wvalue of ){ [f) at the p01ntf §z, where gz is a
certain point in the interval [f.z_, tz] Let us set l-mOzAZ‘K , where
A% =2y =2y s, (€=42,...7). Let us calculate the sum

(q}

- 3 i l5:) i)~ wpea )] 1.4

and let us investigate its limits, as the number of points of dividing this
interval [0 5] approaches infinity. This limit always exists (/ [z‘) is

continuous 1n[a; f] and /V/f} is a function having a finite change) and is /10
the Stieltjes integral of the function /;/ (If’) with respect to the function

N5 .
Lirr Sn{g}=f /; (t) N .

/7 - o= -4 (1.5)
(A—2)

In the further discussions, it will be assumed that almost for all

te [a, é’] there is a finite derivative

AN (2
U[t‘/‘—'—a/}U: (1.6)

and then we arrive at the Riemann integral
2
Ty =S P () w2t 1.7
o

The functiont/(f}, determined by (1.6) characterizes the measurement intensity.

In view of this, we shall call (/(t"j ’ éé‘/o, 5] the measurement density.

When the indices 4; ‘/ encompass all values from 1 to /7?7, the integrals

(1.7) comprise the matrix

T=M Tyl (o) =525 7/ (1.8)



Let us assume that the matrix of small positive elementsd = //a;//,
(‘,/-‘/,2, cee, ) is given, and that these quantities deviate very little
from the elements of the inverse matrix. Then the measurements for which

w(it) , z‘é‘[a, éo]satisfy the inequality
max [f-T/<S (1.9)

will be called quasi-continuous.

Let us note that w /%) , fe[o: é’] is a certain smooth function showing
. . av: . . .
the change in the step functlon;‘?;— é’(z,‘bj’ where AA{ is the number of

measurements in the intervaldi}' .

It is apparent that this approximation is always valid for mass
trajectory measurements. We find from inequality (1.9) and the smallness

of the elements of matrix J’ that the matrix elements

B=J7 (1.10)
deviate very little from the elements of the matrix kg from (1.1).

The matrices J and A& are symmetrical, in view of the symmetry of the
matrices 4 and /('a.

Below, we shall only study the case of quasi-continuous measurements.
For the given function U{f} N Zf‘e‘[a, 5] it is assumed that there is a known
program of quasi-continuous measurements of the function \P(t,Ql,Qz,...,Q )
m

i.e., the location and the intensity of the measurements are known.

Now let us turn to the problem under consideration. An approximation
of the matrix 4 by means of the matrix ¢/ makes it possible to reduce the
problem of finding the optimum measurement points to the problem of finding

a certain finite function(/{éj N 156[0’, é’], i.e., it is reduced to a non-

- . = - [} m n - ENIEED @ NENENEN N




classical variational problem.

3. Optimum Measurement Program

Let us discuss the problem of finding the optimum program of quasi-

continuous measurements of homogeneous composition.

It is clear that any elements of the matrix o from (1.8) may be regarded
as a certain functional of the scalar function ¢(?), #€ [0, 6]: /12

‘7‘:'/' [v)]= a_’/z‘.(z,‘/[y(ﬂu/ﬂq/{; () =7%2502377) (1.11)
We shall call the matrix 7 the matrix functional of u(t):

J=Jlul] = IZJ'[U(*/J//, (6,542, .-, 7). (1.12)

Since all the functionals comprising the matrix .7[1,//;'-/] are linear functionals
of u(t), we shall call the matrix T[u(t)] a linear square functional of u(t).

The inverse matrixd [w(&)]:
Blutd)] = fTlu] _}" (1.13)
is also a matrix functional of u(t).
The following theorem holds:

Theorem 1. Let us assume that L, /zf-}’ ) --,L,,,{ﬁ) are linearly independent

and analytical functions for [a,é’] . In addition, let us assume

£
et I L, (DLl =0, (2,3=07%. .,7) (1.14)

where L, (#)=-7 forlo, &].



Let us study the problem of determining the scalar function «/Z)-244

of the minimizing functional

B, [ - et N Jen [wl)])
” Aty [w)] ) ? .15 L

(K,n=2,3,... m ;4‘;/'.-_-./’2)“‘) )
with the limitations

osult)sc, , tela,l] (1.16)
fa[é/‘/é’c""c’/g—a/’ (1.17)
-4

where c7{)') /(;/.:ZZJ"’J,”) are elements of the linear matrix functional (1.12).

Let us define the set ﬁ-;:f;[z/(é)] and £_= £F_ [U{z‘)] as follows:

£+ ‘[é"/-'/l‘/’k/?7&],

(1.18)
E.=[t: rg)+ 1< J],
where
” B,- 2
f’[é)=[:§*ﬁ L], (1.19)

The quantities 5,,, 3/:2,»".' 37,,, are elements of the first row of matrix (1.13)

for the control &%/, and £ is selected from the condition:

G mes £, =C, (1.20)

Then the minimizing function ¢ %%/ is determined by the following

relationships:

Ua(t}"co for £:=£+[‘//é)= 4/75‘}];
wot)=0 T EC=E [wit)= o], (1.21)



Let us investigate certain conditions of theorem 1. The limitation
(1.16) follows from the definition of the scalar function «(&/s%€/[o,6],
according to which this function can not be negative. 1In addition, the
number of measurements per unit time is always finite (apparatus limitation).
In view of (1.6), limitation (1.17) is a limitation on the number of measure -
ments. It is assumed that €, is less than &, (- /) — the maximum number of

measurements which can be performed for/&, 6] .

To prove theorem 1, we derive the first variation of the functional
(1.15) and study it. We should note that the method of solving the non-
classical variational problems, which is based on this principle, is used

in studies [6, 7].

Let us first introduce certain definitions. Let qu(zf]] be the matrix
functional of the scalar function L/(f/. Then the first variation of the

matrix function is determined by the following relationships

ST[w)]= 18T 1,  Gj=r2,..,m),

i.e., the first variations of the corresponding elements of the matrix

functional .7[4/[.,_1/] are elements of the matrixo"J[A/(é’)_].
It is apparent that the rule governing the variation of the product of
the matrix functionals coincides with the rule governing the variations of

the product of the functionals.

4., Proof of Theorem 1. 15

To find the first variation of the functional under consideration, we
shall first calculate the first variation&/[¢/(%4)]. By definition of the

inverse matrix, we have

Blud)] Jluld] = E,



where £ is the unit matrix. The first variation of this relationship in the
vicinity of a certain equation « (%), ¢€/[@,] may be written in the form

SBT+ B =0 /8=3[z/(g-)], J.—.J[q(fj]). Multiplying the last expression on
the right by the matrix 8, we obtain

IE=-5SL78 (1.22)
Let us introduce the following matrix function for [o', &7
L= IL0- L, j=q2,... )

Then the first variation of the linear matrix functional J may be written

as follows

/4
IT=[ L&) S (2)s,
&
and due to this (1.22) assumes the following form

/4
d’B=—_/3L(t/8d’z//z‘} ot (1.23)
-4

Below, for purposes of convenience, we shall investigate a functional

which is the inverse of the unknown functional
' -7
P = {8, [ui)]} (1.24)

Taking into account (1.28), we find:

&%, [ul]= 5= | TL(2)8],, Sttt =

‘. . (1.25)
=L [ 25 8,1,001,00)8, Sl
Bﬂ % =y ¢ J

Let us introduce the notation

J =B [j=2.3,.  m), (0,=7)
=8, + TS 0 (1.26)

10



and taking into account the symmetry of the matrix 8, we finally obtain

&
d'e = ‘[ L) S ft) o, (1.27)
where the function /7(%¢) , ¢€/a, i] has the form
re)=lE 4 L@]”. (1.28)
Je
Let us investigate the relationship (1.27) in the vicinity of a certain
internal controle (#/) , te [0', é’], which satisfies conditions (1.17). The

following holds:

Lemma 1. Let us assume the conditions of theorem 1 are satisfied.

Then any internal control can be "improved" .
We shall prove this statement.

In view of limitation (1.17), variation i /) in (1.27) is not free,

and is subject to the following condition
'3
S Sewft) ot = 0 (1.29)
-4

Let us free ourselves from Condition (1.29). To do this, we represent 17

the variation A‘c{(t) in the following form

dult) = Sw'(t) +Fa (1.30)

where Jy'(t} is an arbitrary variation (variable), and J? is a certain

constant (constant variation).

A specific constant I is put into correspondence with each arbitrary

variation Ju’{f/- Thus, with allowance for (1.30) Condition (1.29) yields

11



£
) PR /Ju () ot (1.31)

G-
With allowance for the latter relationships, (1.27) may be written in

the form

‘ ¢
b =J¢/é/d’g’(f)dz‘; P(z‘]=/’/t‘1-g_{;a//7f/df- (1.32)

In view of the conditions of theorem 1, the influence function

¥(¢) may equal zero only at a finite number of points. In actuality, the

assumption (f’(t).—'z'ﬂfor [0', é’] leads to the following equation for any control
L/’[f}:
# »
L)+t L)+ + by Lip(t)=c, .99

'
(the quantities V‘.., e, Vn‘: are values of (1.26) for w="(&), ét‘[o, &] , which
expresses the linear dependence of the function 4,(%/=-/ L) [’a/’—‘),---é:m(f/)
for /o, é’] Thus, the constant ¥ in (1.33) does not equal zero in view of

the linear independence of the isochronous derivatives.

However, Equation (1.33) contradicts inequality (1.14), which is a

necessary and sufficient condition for the linear independence of the function
b, (L‘), oy Loy ) for [, 6] [8]. 1In view of the analytic nature of Lt/fj, e
L () foOr [0) £] Equation (1.33) (Equation $¥/#)= ) can hold only at a finite

number of points.

Thus, in the first relationship (1.32) d‘u’(r:’-j is an arbitrary variation,

and Condition ;f[zl-}zo holds only for a set of measure zero for all equations

vl , telaé].

Let us assume J’U/(L‘#(U P/é_} s MO, /L/—cor/sz_‘ + Then c"‘?b, > Oi..This
means that for the controle(¢)+d(?), the functional will be greater than for

the control «(¢).

12



Since &/ (¢)is an arbitrary internal control, any internal control may be

"improved" (in the sense of satisfying Condition dv‘—?f’, >0).
Thus, Lemma 1 is proven.

It follows from Lemma 1 that the extremum is achieved at the boundary
of the permissible region of controles /#/, since any internal control can

be "improved" (it is assumed that the extremum of the problem exists).

To construct the extremum control, let us investigate the first variation
of the functional of the problem. In view of (1.17), the functional of the

problem has the form
£
Glult)] =R [ue)]+ /Efa(z‘jo/a‘,

where 4 is a Lagrangian multiplier. The first variation of this relationship

in the vicinity of a certain boundary control has the form
(3
G = [(I"(t) +2) Fu(t) o2 (1.34)
o

The Rayleigh control ¢/ %) from (1.21) is an extremum, i.e., for € in the
vicinity ofew %%/, according to (1.34) we havedG <. 1In actuality for
£ES we have Swt)s 0, )rA>0, and tor£S - Suw)zo, rHrA<0. 1t
is thus assumed that for the wvariation o"u"(t} the Condition (1.29) holds.

Any other boundary control is not an extremum. In actuality, if we have

¢ 0 at any section E:, then & > o, that is, /7(¢)> & and d’u[f}ro.
Theorem 1 is proven.
Thus, the extremum solution of the problem under Condition (1.14) is

reached at boundary of the permissible control region u(t). The total

duration of the optimum measurement periods is determined by the constant

/19

13



ECL(see (1.20)]. The quantity €, influences the variance of the parameters
-4

being determined, which decreases with an increase in C,.

5. Case when Condition (1.14) is Not Satisfied

If a control exists which satisfies the limitations (1.16) and (1.17),

for which Equation (1.33) holds, then this control will be called singular.

A control may be singular, if inequality (1.14) is not satisfied. However,

this condition is not sufficient, in view of the specific nature of the

coefficients having linear form (1.33).

Let us first obtain certain relationships following from Equation (1.33).

* ¥ *
In this equation, the quantities 1/2 ) Z) l/,,, may be represented as
follows
v B8, D
Dy '
Yephagls a3 139
” (4

ro_ -
where _D,,,D,z)...Df:, are the cofactors which correspond to the first row of the

matrix J” with the elements
. &
- ’ .
;= cfb,-(t/.éj/f/u Bt ke, m) (1.36)
Then (1.33) may be written in the form
¥ * * *
’ZDI/ ['/ /é}* "Dlaz’a/f/f""‘-pfm Lipy (&) =Dy ™ (1.37)
Let us perform integration ,7 times in the limits ¢, & of relationship
(1.37), multiplied respectively by the quantities lle/f/d/(c"/,[y{éju’/é/,...

b,,,{fjuf/f/, L/F(fj With allowance for the notation in (1.36) we obtain

the following relationships

14

/20



7 e . ¢
2 0j I =D [ L)t

c
o
.g'pff %y =_D,*C‘Z L, (&) u*(E) /7,

- . , . B (1.38)
Z D’j ¢7mj =4/, C“./ L,,,(é)t/"‘(t‘)a’i’,
Jer7 é [4

Z0; [4; @)ttt =" D] c, .

The left sides of the first (/7>-7 ) relationships (1.38) contain the
product of the cofactors of elements in the first row of the matrix .7" by
elements of the second, third, etc. mth row of the same matrix. All these
products equal zero according to the specific property of the determinant.

Finally, taking into account condition c';& O, we obtain
£ A
0./'4,-(f}4/ Bot=0  (j=23,.. m). (1.39)

We should note that condition .D,';é o1is also assumed, which is always
valid for a finite number of measurements and linearly independent isochronous
derivatives.

The last relationship in (1.38), with allowance for (1.39), gives

¢
JL, (8 e et =", . (1.40)
(-4

For the case when condition (1.14) is not satisfied, the following

statement is wvalid:

Theorem 2. Let us assume A,/{-}) L, (é},...J b, (€)- are linearly indepen-
dent functions on [o" & ] which satisfy the equation

3
et [[L, @)L (ot =0, (x,2-2%2,..7) (1.41)
14

wherel, (¢) =~71 wor [0, £].

15



Let us consider the problem of determining the scalar function (%),
ée[a, ;J which minimizes the functional (1.15) for the limitations (1.16)
and (1.17).

Let us assume one control «¥/Z/, tele, ] exists which satisfies
the conditions (1.16), (1.17) and Equations (1.39).

Then this control provides the extremum of the problem being considered,
and will belong to a class of singular controls. The set of singular con-

trols is infinite. The functional (1.15) of this set is constant.

In the opposite case, when only Condition (1.41) holds, the extremum
control for the problem being considered will be non-singular and will be

determined according to (1.21).
Proof

It follows from Condition (1.41) that for [o, ] the following equation
holds

L by (B) e ba () # - Pk py oo (E) = X
(1.42)

where oJJ- 0’:0}/)2,...”7) do not equal zero simultaneously [8]. Thus, ofp # &

in view of the linear independence of /J,(f),...}b,,.,/r_‘j. We ghall show that o/, # 0.
To do this, we shall integrate Relationship (1.42) within the limits [0', b’]
This relationship multiplied by &*(#/is the control satisfying the Conditions
(1.39):

&
°4/_/[’, /é/(/’(l‘}d&":,{acf F)
P4 (1.43)

where &y is the constant sum Condition (1.17). Thusel, ¥ O. 23

16
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Let us divide Relationship (1.42) by, +#'€Z. We obtain
L, (E)rplia(B) F -t B Lo (2)= B0 5
=% (i=023,..,7)
where/S,'—-;:'; (=6 E,5, 0, .

Let us show that/-‘-’:,'*-lj-": (/=23,.../7). To do this, we shall investigate
r s >
the cofactor 2. The first column of the determinant 2, is transformed,

with allowance for the equation 4, [{‘}.-.-/3, -84, (&)~ ... = LBy Lo, (Z/ following
from (1.44).

We have

12 & 3
2 /Z.Zz/‘éé‘—/sz /L:Uéfz‘—. = B /Z‘,l,,,, ot ‘%:_ Ny ol

& 'S 4
1)""/ )Jﬁ,/@u?é—ﬂzﬂé z/o/z‘—...—/s,,,‘_’fé_,/l,', ot T I
) ° G
2

- - - - - - - - - - - - - - -

£

4 {z » x o
P ,,/"" Y [Ln s L s

With allowance for relationships (1.39), the first terms in the first
column of _D/_: disappear. Finally, changing to the notation (1.36), we find
that the remaining terms in the first column of Dg contain a linear combina-
tion of the following columns of the determinant .D,: . Taking this fact into
account, we obtain .D,: =/32 _D/;, i.e. ,/% = UZ*' Similarly, we may show that
ﬁ’.? - %;*) cens By = 1/’_:;‘. (To prove these equations, it is necessary to

interchange the columns in the corresponding determinants).

Thus, Relationships (1.33) and (1.44) have the same left sides and,
consequently, the same right sides, i.e., &#*/%)— is a singular control.

However, since Condition ﬁ/zf)#-/'?:a for [0, £] corresponds to (1.33) in (1.32)

17



we have d’q&, =0, il.e., &*/*) satisfies the necessary condition of the

extremum.

L d *
Let certain values of ‘)2) N Vrm /5} ‘—'Q/;/’a/f) correspond to the
singular control ¢«/*/#). Any control which provides the same values to the

quantities in (1.35) will also be singular.

Let us formulate the problem of determining the entire set of controls
from the Conditions V, =1}" ..., Vm= )7 and the limitations (1.16), (1.17),
where V;‘, ... Y2 are given constants, and V2 ,...,Vm are determined by (1.26).
Under the given conditions and the limitation (1.17), the control is only
included under the indices of specific integrals. The integrands are functions
of one variable (the integration variable). Thus, the number of singular

controls satisfying the limitations (1.16), (1.17) will be infinite.

The functional is constant on an infinite set of singular controls.
In actuality, we find the following fromConditions (1.24), (1.15), (1.33),
and (1.40):

B - /J/jz,(f)(z LY Li(8) ot = C/Lua/t—[c*jc, ’s

It is apparent that in the remaining cases, if only Condition (1.41)
holds, and Condition (1.39) is not satisfied for any control u[f/,
ée[a’ 5_] satisfying the limitations (1.16), (1.17), then we arrive at the
linear form (1.42). This form does not coincide with the form of (1.33),

i.e., the control will not be singular and is determined according to (1.21).

The theorem 2 is proven.

Corollary. 1If z/*[z‘/ » %€ /o,4] is singular, then with L, (5 =corst
tor [g) 8] (7 >7)we have )é“.—\é";_._: %"‘.—:0’
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In actuality, all the cofactors _D,e,@_;,_D,; have one and the same first
column with the elementsJ (/=23 m} This column will be zero with
L, (¢)=cors? , in view of the fact that <Z, L//-' U’Q/z‘—ﬂ (j=2,3,...y7),
as follows from Raltionship (1.39). Finally, taklng into account (1.35), we

obtained the desired corroboration.

The simplest example of a singular control pertains to the case:
m=7 o, ¥#)=A& , zelo, fJ. Since L‘//L‘/z/ for[O, 6], any control
wr(E), tela, 6] satisfying the Conditions (1.16), (1.17) provides one and
the same value "—25/=C‘, to the functionalqé‘/. This conclusion is obvious,
since when there is one parameter and its indirect measurement is performed,

it does not matter when an infinite number of measurements is carried out.

We could give many examples of singular controls for m > 1. However,

as a rule, they are only of a mathematical character.

However, a singular control may occur in practical problems. For example,

let us investigate a navigational problem connected with determining two
parameters characterizing the position of the plane of an elliptic orbit. A
detailed description of this problem is given in[9]. In [3]& special case
is studied in a discrete formulation. For brevity, we shall give this prob-

lem in a continuous formulation.

We have: ')V(Z"/=Q1605z9/z‘}+ &= Sin EH), zf-é‘[b‘,é’]) , (5/{)=€is the true

anomaly). The sum of the variances is minimized: ¢ = Bll + By The

absolute minimum &0 is achieved under the condition that relatlonshlps cos

28 M)/t b/ S/ 28 o)/t o are satisfied if ¢ /21') tele,8].

For example, for &€ [0,/7] we can readily select an infinite set of
controls ¢r *(%/ satisfying Conditions (1.16) and (1.17).

An equation similar to (1.33) is satisfied in this case, since the

coefficients will equal zero for 4, (%) and 4, () when the relationships
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given above are satisfied. 27

6. Variationmal Problem for Some Measurement Compositions

On the interval [0’, 4’] let us give A/>7 functions to be measured
Vyé%g)) ”_9uﬁ”9(;j, each of which depends on »» parameters of the orbit
42,,&2)_,_’5Z”. In addition, let us give the variances g/¢, “,Jéﬁé” for
each measured function as certain constants. For measurements whose errors

are random and independent, the correlational matrix of the parameters to be

determined is as follows

Ko = {m . ﬂj}-': (1.45)

z th
where A is the weight matrix for the Z composition of the measurements,

which has the following form by analogy with (1.2)

) @) 3 2") 2¥"e.) /
A =/ / /”‘/ i O& & ’/‘/"2 % (1.46)

th -
where /Vz is the number of measurements of the Z composition.

Let us introduce the equation

t
Z/(b)/t/- Ve ((=h2yrm; E2F . M)

3&‘ ) (1.47)

The distribution of the quasi-continuous measurements in this case is

determined by the vector function
U(f}:'{‘//[f‘))“'é/ﬁf(t}}7 (1.48)

each component of which is the density of the measurements of the corres-—

ponding composition.
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For the quasi-continuous measurements, we obtain

” ¢
J’;§ Y4 ﬁi 7% I A;(ﬂéf)lg{‘}(é) Us @At (5j=42 . 2=4..00)  (1.49)

We should note that the matrix o from (1.49) may be regarded as the

matrix functional of the control vector [//%) fe[o){] g= J[U({—}] .

For M># measurement compositions, we may also formulate the problem

of optimizing the observation process.

Separate determination at the parameters will not be considered, i.e.,
when the compositions are not given by means of the parameters being deter-
mined. If this case occurs, the problem of simultaneously determining the

optimum composition and measurement program is devoid of any meaning.

For the problem of determining the optimum composition and measurement

program, the following theorem may be proven:

Theorem 3. For [o', &], let us give M >/ systems of analytical
- b/
functions: [_,l{/}/f/).,.L%/g))' .,.L,//”/(tj)... L,(,,{ ). Let the elements of each
system be linearly independent for [0’, f], and satisfy the conditions

N)L(

£ s) 3
det )Ly Ly ot O, L, (#a-4telo,€] (1.50)
I~ 4

(61'/7 Ml' ,{:‘)Z:a /)/77/

Let us investigate the problem of determining the control vector
V)] = Z/o/:fj, ¢€/a, 6] which minimizes the functional

By V)] = ({7 [v)]} ) .51

under the limitations

O<sug (t)s c,,/‘), (5=1,2,... 7) (1.52)

21



& ar
a«.,/[sz uefe) ot =c, (1.53)

=/

Let us determine the sets E;NLL’-;HJ[(/[:]] and ﬁ”L[_@[zj{ﬁ], (6‘—' f,a,..-”’)
as follows:
Efv: [é N F{‘}/é}v‘) > 0])
EQD_[t: W a<a], (1.54)
(f= %2,... #)
where

Lad /"0 (5)
r%)=[5 50" G4, (=12,
=/ $

3//, 82) B s are elements of the first row of matrix B[V[t}]:{J['U(é/]}-f

and the value J is selected from the condition

7 )~ (m)
C,;-C,(/j med E,}f..fq,mCE ; (1.55)

>

o
Then the components of the minimizing vector function 17s (L‘/ are

determined by the relationships /30
U= we (=P -],
v-0 o (£ EC U ()= U], (1.56)
(3= /,2. 5 P7)

Let us consider certain conditions of theorem 3.

Here Condition (1.53) is a limitation on the total number of measurements.
We may formulate the problem of when, instead of limitation (1.53), /=7
limitations exist of the form (1.17). This problem will be similar to the

preceding problem. In this case, limitation (1.53) makes it possible to
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"transfer" the measurements from one composition to another, and to select

the optimum measurement composition, in addition to the optimum program.

The theorem 3 may be proved by the method presented above. However,

there are certain features which we must discuss.

Instead of &,,, the inverse functional qu ={B” [V[t}]}-, from (1.51)
is examined. The first variation of this functional in the vicinity of the

values of a certain control vector [/(¢¥) has the form

f V.74
5B, '/[,Z, 7 te) o, ) Jer2, (1.57)
P =

where:
y o, 6,17 7 Bl )]

The following holds:

Lemma 2. Let the conditions of theorem 3 be satisfied. Then any inter-

nal control lf{f) may be "improved".

To prove this, let us proceed as we did in section 4. In view of the
integral limitation of the problem, variations A’(/,/zf'}, . ..Orz/” [z‘} are

related by the condition:

’ V. 4
‘/[520"&/5 /f)]o/z‘: 0 (1.59)
P-4 x/

Let us make the substitution

Su, (8 =V, (&) » LA,

(1.60)

S, (2)=S VvV, (t)+ S,
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where Ji/,[i‘), . ..JVM/ﬂ— are arbitrary variations, and JR is a certain
constant. We find the following from the latter relationships

&
'c-f/?--—-———é /[ZJ’V,,(L‘}]O/#, (1.61)

ME-a) g 4=/
due to which the first variation of the desired functional may be finally /32

written in the form
€ v % / g” )
8, = j{g [ (¢/+;€]d‘1/5(zf)}4’2§ f?=77(7;)f[:,§ﬂ iz (1.62)

In view of the fact that g"’y, (t),.,,)cJLVM (¢) are arbitrary variations,
we may show (just as in section 4) that any internal control Z/(zf'} may be

"improved".

4,
Thus, for all permissible controls, the functions /’{)(tjf-,e, (a’:/,z, e, M,
are zero for [q, 5] at a finite number of points, in view of the analytic

nature of L‘f},(iz/,Z}.“M; &£=q2../m] and Condition (1.50).

Thus, the extremumcontrol is achieved as a boundary of the permissible

region.

The fact that the boundary control (1.56) is an extremum may be proven :

just as in section 4 [control (1.56) cannot be "improved"].

It follows from (1.56) that the control vector U/ °(%) depends on one
constant 2. This may lead to the situation when one or several components
of the control vector V’/é) are identically zero at the interval[d,f].

This will mean that the measurements of these compositions are not effective
in the sense of the minimum of the functional (1.51). Therefore, in this
problem the optimum measurement compositions are selected simultaneously with

the optimum measurement programs.
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The special cases in this problem may hold only when conditions (1.50) 33
are violated . However, satisfying the equations in (1.50) does not mean

that the control is singular:

The control satisfying the following conditions will be singular

v”{tj’*e 0, te[c:v,é’], (3=%2,...r7) (1.63)
or

! &5,

@’/E,ljjlfj W=¢, telo, 8], (3=12,..,m) 0. et

where the sign (~) shows that these conditions hold for U(%)= 57(fj,
telo,&]

Since one and the same constant is on the right hand side of (1.64),
it thus follows that the isochronous derivatives for different measurement

compositions are linearly dependent.

It is usually assumed that this does not occur. In view of this
assumption, an equation like (1.64) can hold only for any one function to

be measured.
o~
For this case, the number of singular controls L}(Zj will be infinite.

In conclusion, let us note that, in the analysis of the solutions to
the variational problems, conditions for the analytic nature of the isochronous
derivatives were assumed. These conditions must be valid for the solution
of each specific problem. This validity may be readily achieved, in particular
when studying unperturbed Kepler motion, since in this case there are known
expansions of the coordinates and velocities in series, and as a rule they

are used to calculate the desired derivatives [10]. 34
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II. Algorithm for Determining a Non-singular Solution 35

1. System of Transcendental Mjuations

Let us study a known singular solution of the variational problem [see

(1.21)] for the case of a homogeneous measurement composition.

Inviewof the Rayleigh extremum control in specific problems, it
is necessary to find the measurement periods whene«(2/=C, In the remaining
sections of the interval [a', 5’] » Mmeasurements are not performed. When the
number of points for shifting the control is known (the boundaries of [0', f],
if they are a solution, are also assumed to be shifting points) the solution
to the problem does not entail great difficulties. However, as a rule, this
number is unknown, and must automatically follow from the solution of the

specific extremum problem. Below, we shall study this case.

Let us show that the solution of the given extremum problem may be reduced
to finding a finite number of independent variables in a special system of

transcendental equatioms.

As the independent variables, let us use the quantities ”2 , 1/3 y o l},.,
[V EI), which determine the function/’(f}. To compile this system, let us

first consider the following sequence of operations{C,-=/}:
lacd 2
I [,:?, > h &l

(a) Formulation of the functiom g o [O’ é’] J z/
> s 7=

(b) Determination of the points z‘zt—/ , Lop //;/,zr“,:) as boundaries

K 2 7 of the intervals of time satisfying the conditions

) *A = 0, e [o, €]

x
g/fze 'tze—/}ch .

(2.1)
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(c) Calculating the elements of the matrix ¢ :

T-1% / t"Z LI, g
= = i j/ R (1,/:/,2,... m) (2.2)

"‘ee-/

(d) Obtaining the following quantities:
‘7 = B/(' .
S B, 2 {J‘2,3,-.. m), (2.3)
where B,, , ..- 87, are elements of the matrix 8= T

It follows from the necessary condition of a strong, relative extremum,
~
that if [{ = 1// ( Jj=2,3,.m , then the points obtained from (2.1) determine
the Rayleigh control corresponding to the solution of the variational

problem.

Thus, to find the extremum solution of the variational problem, it is
necessary to determine the independent variables l.é) d,,., from the solution

of the following special operator system of equations:

(Vo, Uy, o Un), (2.4) 37

where the right-hand sides are obtained from the sequence of procedures (a) -

(d) given above.

Let us dwell in detail on Conditions (2.1). The points Zg, to,-o ta)c
which satisfy these conditions will be called the points of switching the
control. They are uniquely determined from Conditions (2.1) in view
of the analytic nature of the isochronous derivatives and the condition

L&) +A2 0 on [0,8].
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This determination may be made in the general case on a computer. Thus,
for the assumed values of /é ’ /é PR I/,,., //75// the functions /7/2,"/, teb, {]
are constructed. Then we select /(p)l// -— an arbitrary initial approximation

for /_2/, contained between zero and /7’ =0@Z? 7(¢)  (For A/ = & we have

me3E,wC, (6-0) TOT J)= /7 e Ep =0 )

The points /((OJ,? 7 which are boundaries of the /./?(a)/ time intervals,
for which the conditions f'/z‘]}//?(o// , t€/o, &) are satisfied, correspond
to the points f,mi 2‘2[:}. tz[f“y . In the general case, these points will
be zero functions /—’/é/*/ﬂ W/ for [0‘, 5’] In addition, the set éx("} of
points may include the boundaries [O’, &], if /-7/0}7 /,Z(ol/ ,» and /7(€) > /2%

(or one of the boundaries when only one inequality is satisfied).

We should note that when the roots of the function /7/%/- /2?/ are found
for [0', f] , it is assumed that their number is unknown. The roots of this
function may be determined on a computer. For this purpose, a table of values
for the function /7[5'), z‘-e[b’)f] is compiled with a certain step A (which is
selected empirically). In addition, points are found where f’[t)—/}[”}/
changes sign. These points are assumed as zero approximations of the roots.
The roots of equation /"[f/— /ﬁ("} =@ are found with the given accuracy by
means of the analytic expression for /"[z‘-) Then the same procedure is re-
peated for -é— If the number of corresponding roots for —2—/3 does not change,
the roots obtained are assumed to be the desired omes.

Ved

A change in the number of roots for 5 means that this procedure must

be repeated. This is continued until the required condition is satisfied.

x'? ‘

e @ © .
Let us setc;(ojsz [ézej— tzr-/ ] If ¢ j< Cy, then, to satisfy the inte-
=/

gral limitation of the problem, we select a new value of X from the follow-

. (-] (’ o) »
ing considerations: ﬂ</./2(///</.2(oj/, however, if C',( > C,, then /-2 < /ﬁ /</7 .

In additi m, for this value //l/=//2(’}/, ,(w time intervals are found wiich

satisfy the condition /"/t/}/j”//, {-5&5’]. In the general case, ,«—(’j does not
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coincide with x%. Then the value of C‘,(’j is calculated which is compared with

t .
Cy . This process is terminated on the & h step, whenwe arrive at the inequality /39
/C;ﬂj_ c, /< Ec, where &, is the assumed accuracy. The values of z_‘;{:’{ .

t(‘} are used as the points of switching for calculating the matrix (2.2).
z:(ﬁj

Now let us investigate the extremum problem for 47> 7 measurement com-—
positions. It may be readily seen that the solution of the problem is also
reduced to the system (2.4). However, the right-hand sides of this system

will be formed from the following sequence of procedures (see theorem 3):

(a) Compiling A7 functions which determine the points of switching the

control in the interval [, £]:
7 [Z @) 12
F{ﬂj/szé—'_sz[h/ UJ Lj (t)]) (5'/’2""/”)? V’E{

(b) Finding A/ sets of points for switching the control, as boundaries

of the time intervals satisfying the conditions

f’”{tj#—i»’&, /”‘?ﬁ/fﬁ} o, ... /’/"fé/,qzﬂ) el 8]

M ok ) )
2 Z';(fzf —te!—/)caf‘)=c/ P

S=; &=/

(2.1")

<
where Ag is the number of time intervals corresponding to E}{j, (5: /,2) ..
»7)

(¢) Formulating the matrix

Ilve) -2 —5—:2— 7% (2.2)

where 40
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)
. Zze
& < @), &
J =/§ é/"'” L () L {t/c/é/’ (3=142,.. 47, &j=13..m)
280~/

(d) Calculating the right—-hand sides of system (2.4)

J = {B[U(f}zg. ,
T {BlvE),

It follows from the above formulas that the order of the system (2.4)

Blvel=-{7lv ey (2.3")

equals( -7 ), i.e., it is only determined by the number of parameters to
be established, and does not depend on the amount of points for switching the

control or the selection of the functions to be measured.

2. A Modified Method of Steepest Descent

To solve system (2.4), we shall use the modified method of steepest

descent which was proposed by T. M. Eneyev in 1957. This method is described

in the article [11] and [1].

The solution of system (2.4) is equivalent to the problem of finding the

minimum of the functional

P=5i 5t (2.5)

where
5 =40, (=23 m)
(2.6)
This minimum is achieved for .§;‘=ﬂ, C/'= 2,3,... 77), which corresponds to 41

the solution of system (2.4).

30



Let us consider the case when the partial derivatives of & with respect
to the independent variables Lé.)Lé g e Y,,, are continuous functions of the
latter (the analytical expressions for these derivatives are given below).

The steepest descent thus corresponds to the direction of the anti-gradient
[12].

The surface ¢in the space of the variables §2 » §3 3 g,,, has a very
simple form [1]. This is none other than a "paraboloid of revolution" in

m-dimensional space. Correspondingly, steepest descent over the

surface of this paraboloid represents the motion along its generatrix.

The gradient descent in this space leads to the system of equations [1]

or, using the rule of differentiation of complex functions, we obtain

o/t 24 S & 2.8)
R A (

lC=23,.. )
a%; - ,
where &@,. = ‘ and the matrix & =/@,; / must be non-singular.
-7 J
The numerical integration of the system of Equations (2.8) is usually 142
replaced by an equivalent procedure — the Newton iteration cycle. Thus,

at each step, the following system of linear equations is solved, which is

generated by the system (2.8)

C&é.dlé * Qs ‘144*"” Y Cirm Alén ="§f

2

(2.9)
/2'=é%.37...znj

To go on to the following step, we must satisfy the conditions

B/+ 2/c° ay)<did), (2.10)
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where kK, = /771'/7){0, 7, 2,...}.

3. Derivatives of the Right—-hand Sides of the System of Transcendental

Coefficients of the system (2.9) comprise the matrix 5-[0‘7/ s

(‘;/.”‘-'13) -+ /7) | Let us present a brief derivation for the elements of

this matrix for the system (2.4). We have

g =£-N, (2.11)

where £ is the unit matrix of order (77-7),
_ )20 .
./V'—-//Ejf—//, z)/-=2)3,.,./77} (2.12)

Let us consider the case of the homogeneous composition of measurements.
We should note that for each given set 4, #,... #,, the points for switching
the control t}] 2, .- ?5x are uniquely determined from Condition (2.1)

according to section I.

Thus, for elements of the matrix A we find

_j_&_éﬁ_ﬂz' iz_‘" ;5=
il AN G AR (2.1

Let us consider Condition (2.1) in more detail. Under these conditions,
(for the switching points) the inequality may have a maximum at two points
corresponding to the boundary of the segment [D’, 5’], if /_’/0}1‘/3 > ¢ and

l(E) v 2> .

It is apparent that then we may set

Pa_, ¢ _,. .
o"dj-" ’ a"/j-—o' G=23- =) (2.14)
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These conditions may be readily interpreted geometrically. In actuality,
let us setlé)[{, 1/,,_, ; A are such that f’@r),s};-p . Then the infinitely
small deviation of the independent variable [, , /3, l},.,, does not shift the

4o .
switching point&’, i.e., ) N g (J=23,.../7) whereas the switching points
A J 2™

lying within [0’, f]are shifted to small values, due to a change in /—’/t} and A.
In a similar way, we may explain the second condition (2.14). 1In the general
case, different combinations may hold, such as when @ and f are not included

in the family of 2k points, or only one of them is included in this set.

Thus, let us set A
L.ty .. tn r-2sr=2k
7= ’ g (2.15)

is a set of switching points which satisfy the equation /"/fd,) +*A=0

A=12,..n).
(In unusual cases, we may have the equation /’/zy)f-,? =07 /7/5’} A=
i.e., ¢grand fmay also be included in the set of /7 points). Taking into

account condition (2.14) we find

_i_l_/‘_:f; _é’_l_/,___ﬂ_l‘g, {t;/=£3 .en 77).

] . wo (2.16)
For the first factors in (2.16) (/ is fixed) , in view of (2.8) we
have
5 = i (5/:' - { (28 __17 35#)
;‘— i, \8.)” B8,\8¢, ¢ Jt, (2.17)
The derivative gB,; may be calculated as follows. The matrix relation is

87 = F,
where E is the unit matrix which is differentiated with respect to t‘(. Let
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us find

PB__p 2T
el P

We may readily find that

& lpr?

’g_if={—/) Yo lt) [l (2.18)
where
),X/ffjcg BA? L’Z/tl/) /‘-:/22)”)) Z"/’"'ﬁ), (2.19)

o , it @)+ A< o,

L=17 . r@)ra>o. (2.20)
Taking into account the above relationships, we find
‘;1;’ lrlo+? #, ~
L) 4T L )T g, (22)],
2%, 8, (2.21)

((=2,3,...rm ; L=72,..7).
The expressions for the second factors in (2.16) assume a somewhat more
complex form.
Now let us first write all the conditions which are satisfied by the

quantities ff’ é‘z) N 1{2) [{3) t,. We have

Flks)+2=0 , (B=142,.5),

-t b~ (-1)7 4, =c’

(2.22)
where C/=C‘, s, if %, & a’,éer-#f,c/:c‘,—é’, if £, #o sZay =4, etc. The
quantityC/does not interest us directly, since we can calculate only the

. O e
derivatives ‘5,‘”(7; y (E=7,... rn, Jj=23,..m)
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Excluding the quantity A from (2.22), we arrive at the system of

equations

/Q%) /Q%J o

-t,ftz -.. (—/} t,=c’

Thus, in (2.28) we have /7 equations of # functions i‘, , z{'_,_ y e fn’ and
of ( 7r7-7) variables Vz,/é,...u,,, . The partial derivatives 5/}. {Z‘ﬂz, n,

j-’-’ 2,3,... 77)can in this case be calculated by the customary rules for derivatives
of functions which are given implicitly.

Differentiating the system of equations (2.28) with respect to // (j
is fixed), we obtain /7 relationships
(3%, 0. 3ts_ 877 _ 07 2% _
oy 0t 24 &’z) ot oV ?
3, o on .,
. . ot j)(/- > (2.24)

s2)is introduced.

£ /7(ts). (37,2,

where the notation

After calculating the derivatives of /; R {5.: /)2’, ,,7) with respect to

and tz’ {Z 72 /,) we obtain a system whose matrix notation has the form

Y
PY =?j— > (2.25) 147
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where P is the square matrix of order »:

-1 tf -7 ... (1)

“ 0 “os
P-= P P : o (2.26)
-p 0 A .. 2 )

\-L2, 2 2 ... p,

where

’%géj{‘é[%m]pq}’ (6=42,0)s 127

and the columns -Z and,?jJ have the form

&

! 5). 74

LR

Aj(ﬁ/‘bj@’é)

(2.27)

N
]
XN

i}

Lyt 4; ()

Q
LN

Assuming that the matrix 2 from (2.26) is not singular, we obtain

.= PTF
!{/ / (2.28)
. Pty .
To find all the necessary derivatives 77j€'/ =/,2, P2y y=E3, )
in the matrix Expression (2.28) we merely change the column %:, and the

matrix A remains the same for all Jj=&3,..m.

Let us consider one particular case when all the elements of the matrix
N in (2.12) equal zero. Suppose there are only two points at which the
direction is changed, where one of them (g or £ ) &= to corresponds to an

endpoint of the interval [O’, é’] and F{fo),t-);a .
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Then we have:

~ tt ~t -~
oY, v 2% , dY, I4
Y R I LA AL

T -
tlh—tb"c >

From (2.14) we obtain the desired result. Then the system of Equations

(2.9) becomes:

4 ==, lim2,3,...m).

In all remaining cases, the elements of the matrix 5'_—_//'01./. /) are cal-

culated using the formulas given above.

The elements of the matrix /P’for the case of A/>7 sets of measurements

are similarly computed. We shall give the final formulas for these derivatives.

Suppose that #7 sets of points at which the direction is changed corre-

spond to the Conditions (2.1'):

2 7 -
f‘-.(j i—( . . 7,"/{»:) zz_l"f) L"(”) .

3 T,y e 2 1%,
where

e ZKM-QSﬂMSZKM /49

These sets do not include the endpoints of the interval ﬂﬂ,éil if they
happen to be points at which the direction is changed, and satisfy the

inequalities in (2.1").

The elements of the Matrix (2.12) din this case can be written in the

following way:
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P 88 pf gt
%:g% ——;‘- < /l',j=2,3,---m) (2.29)

The leading factors in (2.29) are
&)

‘.: tlo 7 4 ~
Sl ) (1) )], e
£

((=2,3,-- m; Zzl,a,...n‘; d=42,..m),

where

) - (s) -
ﬁ( ) =z§ [B[V(f/]}xa Ly (), (xeizem), (2.21")

!(3) 0 when /'[‘)(a) *A< O,
¢ I when /7% (e)+2 > 0.

The second factor in (2.29) can be obtained by solving the following

system of matrix equations:
/50

where
-’ cf e Y PN
-p7 A7 4 o 0 0
- p,"} g /o,’;} o 0 o
0 - o
-P; V/j g g o 0
o Py ’

a) & &) z ) l 7
) Y . ) -
e {l%, x L‘ [LL)} {Zcz:; : ot t= t"} 6): ’
{;':/)2,,,, 25 g= /,&,...M))
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79,
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' 0 v
gty 277 %',,,
2. U :
y”, 7/ j":i_ ! : /
J i > JjTa : ’
: : o)
£ _ar” o
3'14- 2Y; . o
R A ()
%n,, ar? 2ri’
i 54- 0"/{}-
)
277" i/"w@x)___z{g J LY (s (s))}[)‘{fu))_l_
2J; = 3/ o4 % e g8k JgE
J
(c=7d,2,.n5, 3=72,..07).
It is clear that to determine .9;-” the matrix _/ remains the same when
», »
the index P "is varied; only the column j; changes.
/52
4. Search for a Solution in the Case of Discontinuous Derivatives
Let us consider the process of solving the System (2.4) for a homogeneous
set of measurements. By considering the matrix N [see (2.12)], it is easy to
see that, if the number of points /? corresponding to the switching times
(2.15) is changed (in the descent toward a solution), then the deriva-
tives appearing in the matrix A/ suffer a discontinuity. In this case, the
relations used to form these derivatives show that the elements of the matrix
N change discontinuously. This follows, for example, from the fact that a
change in /7 implies a change in the order of the matrix P in (2.26), which
means that the values of —g—é‘;) {[:/,2,.../),- j=33..m) in terms of which the
J
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elements of the matrix A are directly expressed, also change discontinuously.

Discontinuities of the first kind in the elements of the matrix A4 mean
that there are directions of descent along which a section of the unknown

functional @0 in (2.5) has breaking points.

In this case, the functional 95 in the space [/ represents a composite
surface composed of /o;- 7 hypersurfaces for each of which the elements of the
matrix A are continuous (ﬂ=/, if in the descent process the number #?
remains the same, and a solution of the problem can be obtained using a

modified method of steepest descent).

Due to the presence of discontinuities in the elements of the matrix A4,
the direction of steepest descent for the functional €5 does not generally
correspond to the direction of the antigradient. In fact, the singular points
of the line of cut of the hypersurface (points where the number /7 changes) /53
possess the property that their & -—neighborhoods do not determine a close
direction of descent. (This fact is very important in the case when the lines
of cut are nonconvex.) For continuous derivatives making up the matrix A/, the

€ -neighborhood of any point on the hypersurface defines close directions of

descent.

The process of converging on a desired solution (for P ~7 ) can be

achieved in the following way.

. , ) ) ,
Suppose there is an initial approximation Ié , e+ Umy to which there
corresponds the number 7= »® . We take a step according to point 2; we

obtain /‘):n(’). The basic comparison is that between » @ and /7(’} . Then,
if /7('}= ﬂ(/) the problem proceeds according to the formulas in Section 2.

However, after a certain number of steps (because Vit 7 )} we obtain:

nﬁ);e /7/3’*// (2.30)
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This means that the point passed through one or several singular breaking
points; here, the preceding hypersurface does not lead directly to a

solution.

The Condition (2.30) is accompanied by one of the inequalities:

qb(:f”} - ?563})

qbtﬁﬁd < qsﬁu.

If we arrive at the Inequality (2.32), the calculation is continued
according to the standard scheme. TIn this case, the Condition (2.32) may
occur at each step in the sequel. This case may correspond to a convex

functional.

In a general case, the Inequality (2.31) may hold simultaneously

with the Condition (2.30).

Our next problem is to analyze the hypersurface cut in the direction of

descent from the point & to the point (4+7 ).

Above all, it is necessary to find all the singular points of this cut:z/,
Zz)...'Z(,, Then the points %,~&, ¥, ~£,%-&, ’Zz»‘-é',...zt.,—f, Zﬂ"'é, where & is a
small number'{f > 0), are consecutively taken as the new initial approximations,
and a step is taken which permits us to obtain a variation of the functional
(2.5) resulting from a change in the initial approximation. The new initial
approximation in subsequent calculations is taken to be the point corresponding
to the maximum decrease of the functional. 1If in a given cut there are points
which lead to a decrease of the functional during the step that follows, we

then begin to analyze the hypersurface cut from the point <¥5‘3’9 to the point

.

The algorithm presented here was run many times on a computer, and

proved its high efficiency.
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IIT. Optimum Periods for Measuring the Radial Velocity /55

to Determine the Orbit of an Artificial Satellite of Mars

1. Introduction of a Coordinate System; Isochronous Derivatives

Suppose that on the Earth, measurements of the radial velocity ¥(¥¢) =0

are made to determine the orbit parameters of an artificial satellite of Mars.

Let us introduce a coordinate system. The origin & will be located at
the center of mass of the planet Mars. The line of sight will be defined as
the line connecting the centers of mass of Earth and Mars. It is clear that
in absolute space the line of sight describes a ruled surface. Let the X
axis be directed toward Earth, and suppose that at time Z=¢& it coincides
with the line of sight. The plane -ZOé/ lies in the plane which is tangent to
the ruled surface at time # =& , and the y axis is chosen in such a way that
the positive angle from 2 toward f is measured counterclockwise when viewed
from the north pole. The 2Z axis completes the coordinate system in such a

way as to make it right-handed.

It is assumed that the motion of an artificial satellite in its orbit
around Mars is Keplerian and unperturbed. Suppose that this motion is described
by the following parameters: Z# (pericenter distance), & (semimajor axis),

Z° (the time an artificial satellite of Mars passes through the pericenter),
JZ (the longitude of the ascending mode, measured from the ' axis), /
(inclination of the orbit to the plane 2‘5’4//), ¢« (angular distance of the

pericenter from the node).

In the case of the orbit of an artificial satellite of Mars, the para-

meter Zz is a major characteristic (i.e., the variance of %y is minimized).

In solving the problem, we have assumed a simplified model because of

the large distance of the orbit of an artificial Mars satellite from Earth,
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and also since — to determine an optimal program of measurements — it is

only necessary to know the isochronous derivatives.
We shall briefly state the principal simplifications.

Since the mean angular velocities of the revolution of Mars and Earth
around the Sun are small, this means that the angular velocity of the displace-
ment of the line of sight fl{ is also small, and within an interval of
one or two months it may be considered constant in our model. If the interval
of measurement does not exceed 24 hours, then the displacement of the line of
sight may be generally neglected, i.e., we may set (2‘ =0 . Accounting for
the angular dimensions of an artificial Mars satellite and the rotation of

the Earth has very little effect on the isochronous derivatives.

Thus within a small measurement interval the function to be measured is
in the form of the 2 component of the Mars—centric motion of the artificial

Mars satellite.
In a general case (Ize #£0), the unknown function to be measured becomes:
~
Yt =~ , (3.1)

where

&=t cos[0p (£-0)]# y Sin[R4(2-0)],

(3.2)
where 2 ,é} are the velocity components of the Mars—centric unperturbed
motion of an artificial Mars satellite [10]:

. . 7, . ° s
xg.,(;f‘(? 5 yr.-jsg'r‘/s? 5
ol = COS W COSP — sirr W S/irrfcosi
&’ =-5/nwess — cosw Sinpeose,
(3.3)

(continued)
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B = COSW Sin) + Sirw cosfcosc,
/6'=-s//m) Sing) + Ccosw cosp coss, (3.3)

L YL, .
E=~-V5 sin&; ;:V.fg—/efww).
Here we use the notation: & is the true anomaly,

p= ‘7__@"_21)2 e=7- (q._ £r77,

2

z= 7+ecosl ’

( K is the gravitational constant, /77 is the mass of Mars).
Equation (3.2) can be rewritten as
A o~ ;.
=L E+d b, (3.4)

where oZ’ and ‘,Z/ can be obtained from o« and o’ after replacing 4 with
D = _2__(2[/1_4_0} in them.

It will be noted that, depending on the initial position of the planets,

the value of Q: may differ as to its sign.

We introduce the notation:

AL 1B o
then we obtain the following for the measured function (3.1) [10]:
1’ (L= ),
/ Vo d
L’a’ ”‘f/_,b‘; %{J wa - W),
(3.6)

(continued)

44



Ly=-pe(d7Vy + L V),

L=~V 5V, - (e+ )],
Lig=Y/~4Lsini sinflsinw i - coswlesy]],
Ly=VEZ, +Z(een)]

(3.6)

where /@ and /6 can be obtained from./S and /e’ [see (3.3)] after replacing
by -2 The remaining unknown quantities in (3.6) are defined by the ten

linearly independent functions of the variable &:

%:SI./? 5) V,‘—'COS 9,
V, = sin ﬁgos 8, V= cos?8,
Vip= 5in Beos®s, Vs = cos®o,
n&
v6=§["2” P V w;f:
%nSIDQ[f 27, V 0056{21. 6)
(3.7)
Among those, M//, l/[é)l/\é)\/\{/ have the form: /59
W, ==é>k; +-£?V$-'/,
w,=2V, »2VL+eV, ,
W, =-w, » L2 (04, - 3Vjup V3 ),
Wy=-W, + /EQ(V‘, + 3V up Ve ). (3.8)

2. Certain Characteristic Features of Determining the Optimum Program
of Measurements in the Problem Under Comsideration

First of all, it should be noted that a determination of an optimum
measurement program is possible only when the number of parameters is such

that the latter can be determined with a given set of measurements.
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One of the most important practical cases in the determination of an orbit
of an artificial Mars satellite is the case where it is required to determine
the orbit within a short period of time — say, within less than 24 hours. In
this case, in estimating the accuracy of the prediction one may neglect the

orbital motion of the planets, i.e., one may set QG’ =0 .

It is obvious that in this case it is impossible to estimate the accuracy
of all six parameters of the orbit of an artificial Mars satellite, since to
a given measured function (/= - there corresponds a family of orbits obtained
by a rotation about the & axis. Mathematically, this indeterminacy implies
that for isochronous derivatives taken with respect to the angular parameters /60

there exists a linear relationship which in this case can be written as:
A A
Li(t)=aLy(t)+ 8L tz), (3.9)

A
where & =cos ¢ R g:—czfi.g simi , and s/ppr o . Lf $/PP= O, then

Ls/f}EO’ ;‘é‘b, 6’], Sinl#EO "

The Condition (3.9) implies that ol J=¢. Therefore, to estimate the
accuracy of the six parameters of the artificial Mars satellite orbit using a
short measurement interval, we must have another set of measurements or a

measurement of .20 with the a priori information about one of the angular

parameters.

The orbit of an artificial Mars satellite using only the measurements of
,b can only be determined within a relatively long measurement interval when
a displacement of the line of sight makes it possible to fix the spatial

orientation of the orbit.

Suppose that .Q: = . Consider a case in which the optimum program of
measurements (the variance Z; is minimized) is to be determined in the
following two problems: 1) the optimum program of measurements of D is found
with five determinable parameters &= {Z/T, o, 2") W, L‘}; 2) the optimum

rogram is found with six determinable parameters = ~ .
prog P & {Z_;—,O'JL)MJ)/.,Q}
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with a priori information about the parameter '2 . It is easy to see that the

optimum programs of measurements coincide in these two problems.

In fact, denoting the Matrices (2.2) for these two cases by ¢ and J’,

we obtain g = ) , 1/3_--14', U,',.-_-Vy’) Yy =t

s s V‘I: £ considering (2.3).

This proves the above assertion.

Now let us consider the orbits of an artificial Mars satellite whose para-—
meters can only poorly be determined when measuring _D For Q:-o these

will primarily be orbits that lie in the coordinate planes:

—

I (=4, cos)=0 (yo02)
I (=Z, sin)=0 (xo2)
7 i=o . (xoy) (3.10)

For the first group of orbits ¢oZ we have, according to (3.6):
Z/,é-‘/;' llz/é/‘ L_,/f/:béff}l" Y#/=0 (within the interval of measurement, where
_Qé., =¢ ). This is the most unfavorable case (the plane of the orbit is per-—
pendicular to the direction toward the Earth), and the orbit is practically
undeterminable. For orbits lying in the plane oz, we have Lq/f/i' Z:;{é/_ssd .
For Group III we have: Zs. [t}z O for (=~ ; the parameter -‘2 loses its

meaning.

For orbits with the parameters ¢ s —21——, 5,‘0?20, we have [:_,.{z_‘}sa .

For JQ:#-& there is only one singular case: these are orbits which lie

in the plane :cay .

Below we give the results of calculations, given for two important cases:

Qp=0- (m=5) and Lpn( rm=6 )
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3. The Case of a Fixed Line of Sight

Let .Q.,-O We shall give the results of calculations for the optimum

program of measurements D (the variance of ZF is being minimized) for the five

parameters: Zj- Q, 2’ u) /. . The parameter fz is considered known.

In this problem, the majority of the integrals appearing in the matrix g
in (2.2) may be taken in a closed form; only three integrals in the matrix J
are not expressible as quadratures. An approximate evaluation of these inte-

grals may be done using Gauss' method [13].

The following values were used for the parameters of the orbit of an
artificial Mars satellite: Zf— 5o44,34 km, & = 20085,I0 km (the perlod of
revolution of an artificial Mars satellite is 7 = 24’/’ oo ), T=o
-Q =30° , €™ 4’5”,“)=€0°. In addition, we took: M = 42850 km3/sec2.

The allowable interval of measurements was taken to be [0, 7'].
The variational problem in this case becomes nonsingular; its solution
. G
was obtained by the method presented in Section 4,II (the value of C._ vas
-4

varied).

We shall briefly consider the process of convergence to the solution of
the System (2.4) for ZC;;—=6',9/25 (See Table I.) The initial approximation
was taken to be the following: e(‘y /(o} 1/(”} I/@/ I [/”(?é/—-b, ()] , which
corresponds to /7 —6‘ and @10} 1278" Four measurement periods in the
region of the pericenter correspond to this approximation: two near the point
£€=7 =0 and two near the point # =7 . The following step gives ¢M< 95”}

and then q5"= 0 04/<€;b”}= o 093"

After this, in the following step we obtain 95/3):6,35>>95/"). To a

cut in the direction from the point 8=2 to the point #£=3 there correspond

singular points whose & -neighborhoods result in an increase of the functional.
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TABLE I. THE CHARACTERISTIC VALUES IN SOLVING THE

SYSTEM OF TRANSCENDENTAL EQUATIONS

telo, 7], g.f:eg/zf
) Y -4 -dy10° | ~Vs-70%| 1 o
o | 0.00000 | o0.00000 |o0.00000 | 0.000000 | 6| I.278
1| o.Tea52 | 0.6288 | 0.23636 | 0,06702 0.093
2*| o.m030 | o0.66018 |o0.26956 | 0.07893 | 8| 0.037
8" | 0,218 | 0.80246 | 0.40035 | 0.I1475 |II| 0.085
4" | 0.20143 | 0.78352 | 0.37489 | 0,I070I | 9| 0.0I7
5* | 0.21558 | o0.78652 | 0.30852 | 0.1133% |1II [6.6.107
‘6" | 0.206m7 | o0.75200 |o.38m85 | 0.10050 |11 [5.9.1078
2% | 0.21477 0.78357 0.30805 | 0,I1823 | II |4.4.1075
8*| o.2toet | 0.76873 | o0.30202 | o.1rmas |11 |7.0.107°
o* | 0.21086 | 0.76051 | 0.89281 | 0.III56 |II |7.1.1077
10" | 0.21081 | 0.76937 0.59242 | 0.IIIS5 [II {5.4.107°
1 | o.21081 | 0.76935 |0.89241 | 0.IIrS5 I [8.2.107F
" | o.2t0808 | 0.760356 |o0.302811 | o0.ITIS50 |11 |2.9.10718
values of [ngr 14 stepss
0.210808 | 0.769356 | 0.8924II | 0,III550

Because of this, the point & =3 is thrown away, and then we consider a cut
from the point =7 to $=2, according to the algorithm described in
Section 4,II. To make this clearer, the cut is shown in Figure 1. 1In it,
the point Z= & corresponds to 96_‘”:&093 , the point =74 corresponds to
q5k)_—_ 2047+ 1t can be seen that the line of cut of the desired hypersurface
is nonconvex and belongs to the three hypersurfaces for which /7 = 7,8,9 . The

singu i
gular points are denoted by ‘2:/’ 5. Furthermore, according to the
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Figure 1. The cut of the hypersurface 95()}2) Vi, )}4, )/5}
in the direction of descent from the point 955‘) (Table 1).

algorithm presented,we study the process of convergence of four points:

2, -E,Z,+E, Ga-&, é+£,£>0} » taken consecutively as the second approxi-
mation. Only the points ¥, » £ and Ze —& which belong to one hypersurface
for which =&, lead in the following step to a decrease of the functional,
and the point Z, - & gives the greatest decrease of the functional. This
point was taken as the new initial approximation (the step 4=2%), which
leads to a solution of the problem for $= 74 #. Thus, after the point

4 =2% the functional becomes smaller with every step, and as a result, the
computation was continued according to the above scheme involving a modified
method of steepest descent. The point Z,#¢& leads to the same extremum

solution, except that the process of convergence here is considerably slower.
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Figure la. The variation of the measurement periods (cross-
hatched regions) in solving systems of transcendental
equations (S-N step; see also Table I).

Table I reproduces the solution process for the point Z,—-& . In the /67

lhth step we encounter a difference between /4 and g ()= 2,3,4,5) in the

seventh significant digits which corresponds to the accuracy with which this

problem is solved. It will be noted that the following errors were assumed:

Ex =10"2 sec (the error involved in calculating the time of direction

change),

&,

7
The variation of measurement Periods in solving the problem under consideration

=10~I sec (the error involved in satisfying the integral restriction).

is shown in Figure la.

Six periods correspond to the extremum solution, of which only one lies

in the region of the apocenter (its length is ™~ 707’ ). This interval, as
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was found, occurs in the solution only in the case when the parameter , is

being determined. In fact, the optimum programs of measurements for the same
value of c% for /7 = 2,3,4 do not have the measurement interval in the apo-
center. All these programs are close to each other, and contain measurement

intervals only in the vicinity of the pericenter.

Here and below the values of Aé?,‘ =’3jj 2 (j-’%&--- ”") are given for

7
@ = 7 m/sec and Co = 75 measurements/sec (one measurement per 10 sec).

Figure 2 gives the optimum measurement periods 2 for various values of
g‘ (AZ}- is everywhere minimized). The orbit of an artificial Mars satellite
4
is given to scale (the figure is planar). The planet Mars is taken to be a

sphere of radius 3400 km.

The measurement periods (cross-hatched regions) are given with respect to
the true anomaly (on the orbits), and with respect to the time (spectra) for
the values gj =//; 2/’) 4/)’) /2/’ . It can be seen in Figure 2 that an increase
in —C-.;/‘ leads to the maximum wi(ci:ening [’of the measurement interval in the re})gion
of the apocenter. Thus, for c: = 2" the length of this interval is ~07 77 3
for —g’—=4}’ it is ~//'-5_9; for—g‘~= /25 , it is ~ 7/"8/. ForEC/—.-_- 77
we have only five measurement inter\;als corresponding-to the region ;f the

pericenter of an artificial Mars satellite. A lowering of % to 207 has
shown that these periods have a tendency to converge to five points.

This result agrees with the theorem of Elving-Yershov, since here /m»7=5 .
However, an increase in CL; implies that £#°=6 . ( k°is the number of
optimum measurement periods.) This circumstance is related to the presence of
a restriction on the density of measurements when it becomes inconvenient to
increase the duration of the periods ( -points) corresponding to the theorem
of Elving-Yershov. It is more effective to make measurements in the region of
the apocenter. For Z\C:-"J'/’ the length of the interval in the region of the
apocenter will coincide with the cumulative duration of all intervals in the

pericenter.
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47; = /334/"
R°= 8, nAte,

Figure 2. The optimum measurement periods of 2D during one
revolution of an artificial Mars satellite (m = 5). The
measurement periods are plotted against the time (spectra),
and against the true anomaly (on the orbits).
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TABLE II. AN EXTREMUM SOLUTION IN THE SEGMENT [y, 7]
(v%¢)=c, IN THE INTERVALS [Z¢ , 2...,] l=g2, K° ; IN THE
REMATNING INTERVALS [0, 7]~ & %)= &) AND THE CORRESPONDING
CHARACTERISTIC VALUES (£2,=4m=5) .

[
& 57;—=/” 727——-2/' Loyt | Fepp?
K° r° 5; 9 6; II 6; II 5; 8
u° 0.19871 0, 20959 0.18211 | 0.II199
~4° 0.73457 0. 76447 0.65695 | 0,39762
~Yp 10°| o.38372 0.38913 0.3I651 | 0,I8849
~ U508 o.10812 0. IT0G4 0.00038 | 0.03944
Z%nr) | 0.000 0,000 0.000 0.000
fz' 0.044 0,055 0,025 0.485
£° 0.208 0.178 0.127 0.721
é’; 0,344 0.410 0,431 2.4l
z* 1.078 0.983 0.904 8.971
% I.429 1.668 1.807 16,779
; 22.862 13.428 12.529 21.848
4 23.182 13,600 I4.120 23,445
£ 23743 22,636 22,454 23,613
%p 23.892 23.254 23.318 244000
€2 28.682 23.659
A 23.920 23972
; _ A o
2% 4% 72
1.0.10712 | 27,7012 |~ g0716
235 183 133
7 63 37
0.31 0.25 0.16
0.52 0.41 0.23
1.46 117 0.64




For % = 727 the interval in the region of the apocenter is the
(-4

longest.

The numerical values of the characteristic magnitudes in this problem are
listed in Table II.

4. Taking Into Consideration Displacement in the Line of Sight /72

An estimate of accuracy for six parameters of the orbit of an artificial
Mars satellite for measuring the radial velocity is possible only when consi-

dering displécements of the line of sight.

Thus, let £2,# . We shall take Ry = 10~? rads/sec ~ @.5 deg., mean

time ( 4Zy is minimized).

If one solves the problem for the interval [0., 7], by virtue of the

smallness of {2g the matrix  will have a weak basis.

Let us consider the interval [0. 27] and @= [Z,—, Q’,ZV,'?,!J,U)} (numerical

values of the parameters were given in Section 3).

Within this interval, one can obtain the solution of the extremum pro-
blem in question. It will be noted that the maximum deviation of the line of

sight in this measurement interval amounts to one degree.

A determination of the optimum measurement program within the interval
[0,27’] will be stable. Some results of these calculations are given in

Figure 3, in Table 3, 4.

In Figure 3 the measurement periods are plotted against the true anomaly
by means of solid-line segments on two branches of a twisting spiral (the
arrow shows the direction of motion of an artificial Mars satellite), and
against the time in the form of spectra. The diagram of the orbit of an

artificial Mars satellite is planar (the diagram is to scale).
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Figure 3. Optimum measurement periods of D for two revolutions of an artificial Mars
satellite (m=6). Measurement periods are shown with solid~line segments on two branches
of a twisting spiral (with respect to the true anomaly), and in the form of spectra (with
respect to the time).




The extremum solution in the interval [0, 27°] contains from six to nine

optimum measurement periods depending on c -

For ‘g:' — £ we have six points (this result agrees with the theorem
of Elving-Yershov). All these points correspond to the region of the peri-
center of an artificial Mars satellite, where two points lie at the origin
(£=7Z=0), three lie near the time #=7", and one at the time #=27". In
this case, the distribution of measurements is extremely nonuniform. As an
example, let us consider the case C%.:.%% . The first two periods (the region
#=7Z=0 ) have a total length of about 1577 . The succeeding three periods
(near Z =77) have a total length ;v/b.?/’ , and finally, the period which ends
at # =27 has the length of only 677. The last measurement period has a

short duration as compared with the remaining five periods.

<
C,
o C, . A
lution is greater than during the second one. Thus, for E.':‘ =165 N 4’5,' 6 >

For all values of

the number of measurements during the first revo-

b . .
773, /2/75 247, respectively, the total measurement interval during the
first revolution of an artificial Mars satellite exceeds that during the

second revolution: 0/7/4’,' o7, 30; o 7%, o* 08; 2% 70, 3”2 26 -

The fundamental evolution of the extremum solution from the limiting
value of the extremum solution corresponding to the parameter % - 2 is
clearly apparent.

Thus, for Z.%: 24/6 the optimum measurement periods of greatest length
correspond to the region of the apocenter of the first and second revolutions
of an artificial Mars satellite; the total number of periods is equal to nine.
A decrease in C%’- results at first only in a considerable shortening of these
intervals (they later vanish). For ZC-'; = 76. 3 the number of the extremum
periods is equal to eight, and their number during the first revolution is
greater {(for this value of —g—:’- the interval near the apocenter during the
first revolution of an artificial Mars satellite is important). A further

decrease in —gL- implies that there only remain the optimum measurement periods
(-4
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TABLE IIT. THE EXTREMUM SOLUTION WITHIN THE INTERVAL [ 0-2'7"](%*0, m=6)

THE OPTIMUM CONTROL &°/¢)=C, IN THE SEGMENTS [#,,, 7, or]
(€=142,.. k° ) AND ¢/%¢)=¢ IN THE REMAINING INTERVALS [ 0.2 7'

58

N\ & |[f5- b= |15 |etoF|atro- 7
ij (hours) (x°=6) (K°= 7) (k= 8)| (£%=3) | (x°=3)
j=1 0.000 0.000 0.000 0.000 0.000
2 0.1I7 0.222 0,294 0.341 0.337
3 0,806 0.631 0,491 0.5I4 0.510
v 0.932 1.I58 1.488 1.732 2.062
S5 23,000 22,395 8.087 7.839 5.864
é 234504 23,637 84154 10.897 14,725
7 23.928 23.845 21.575 21.483 21,104
8 24,148 24,283 23,628 23,636 23.661
9 28,722 | 24,6I8 | 28.797 | 28,774 | 28.729
Vi 25,153 | 25.846 | 24.366 | 26.379 | 24.4T4
777 | waed | w246 | #.529 | 24.520 | 25,520
2 - 48,000 47,366 27,006 27,211 27.521
/3 - 47,777 47,023 41,829 37.800
74 = 58,000 | 47.484 | 42,679 | 43.272
s - - 47,638 46,803 46,407
76 - - 48,000 47,503 47,537
77 - - - 47,671 47.645

78 - - - 48,000 l 48,000 J

e - — L. - — .




in the region of the pericenter of an artificial Mars satellite. There are
(&) A
seven of them within [0,27] (for example, for C. =4 ). Finally, for

g’— =7% 5 we have only six measurement periods.
(-4

The most stable with respect to a change of the parameter Cg: were those
measurement periods which include the moment of passage through the pericenter
(using the time scale, these will be the three points: Z=£=0; i‘=7",'
t=27"). Thus, for C—C;o’—=2” the duration of these periods is equal to 2775
#==0), 0228 (t=7) , 0%73 (;"--&‘77, , and for C%: 24% we have
039 ., 0?78 , o©0%35 , respectively. (It should be noted that for

C—?—:al/é these three periods have minimum lengths as compared with the

° C,
remaining six, see Figure 3.) Thus, when C'—L is made 12 times smaller, the
(-]
periods in question decrease in length by less than a factor of three, whereas
the remaining periods either generally disappear or decrease by a greater

factor.

This example shows the considerable difference which may take place
between solving a problem with a restriction on the rate of measurements and

solving a problem without this restriction (the theorem of Elfving-Yershov).

Now it is necessary to talk about the change Aéi)‘( J =1,2 4..6). The
quantity AZJ— varies little from ZC-;‘ in the case of the characteristic para-
meter. Thus, for the parameter % equal to 775 and 24”& s We hag:a
AZJ,— equal to 153 m and 90 m, respectively. For the same values of &, the
errors in the angular parameters “2-7 ¢ ’ W are 25', M’. 86’ and 7', IZ’. IO',
respectively. The error in £ in this case decreases by a factor of 4, and

the error in the period decreases more than three times.

The solution of the problem in this case (_Qg # ¢ ) was obtained by descent

S
with respect to the parameter 'C_‘; . Initially, an extremum solution was found

using the algorithm presented above for .gL,-z /2/7_0 . The initial approximation

was taken as: 1‘4@}: %(D}="‘=”€”)=0 .
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TABLE IV. THE CHARACTERISTIC VALUES CORRESPONDING TO THE EXTREMUM
SOLUTION WITHIN THE INTERVAL [0, 27°] (SEE TABLE III)

The values of AQ} > (j=%2,...6) were obtained with A.D.(=6')= 7

m/sec, Co= 7, measurements/sec.

| 725 | 440 753 | w2ho | 2440

o 2
-y - 10 0,I376 | 0.92638 | I1.3367 | 0.76437] 0.67653
AR 702 3.302 1.9635 0.23780 | 2.76400| 0.65287
+Yf- 10% 0.I356 | 0.50802 | 0.71953 | 0.57443| 0.45555

-Y°- 10° 0.2597 0.90625 1.2755 | I1.0I523| 0.79595
-y°- 10° 0. 2003 0.72281 1.020I | 0.81264%| 0.64I93

B=50-4)| s 10T | g™ 507 | 810716
(=2 v
AZL (m) 153 110 I0I = 90
4 (m) 58 30 22 20 w
A7 (sec) 0.47 0.20 0. 14 0.13 0.12
ay’ 25.1 15.5 IL2 9.0 | 7.0
ac’ 44,1 27,2 19.7 15.8 12.3
aw’ 35.5 21.8 15.8 12.7 2.9

The extremum solution obtained was used to obtain the solution for
smaller values of _CQ:__ by means of a descent with respect to the parameter ——C’ .
(-4
(However, also here it was necessary to cut the hypersurfaces along the

direction of descent toward the minimum of the functional).

Such a modification was used here, since an arbitrary initial approxima-
< .
tion for small values of Z, may result in an unstable matrix A — for

example, if to the initial approximation there correspond two measurement

periods during the first revolution of an artificial Mars satellite.
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C,
It must be noted that, when the parameter zé- becomes larger, the &

(4
matrix becomes more stable. This is, in particular, indicated by the fact
that in the case of the extremum solution the quantity (2.5) changes from

10'-ll to 10_16 when é?; increases from lh.5 to 24h.0. The stability of the
©

matrix B is here very important, since the stability of the entire solution
process depends on it by virtue of the fact that during each step the inverse

of the matrix J must be found.

To increase the stability of the computation in this problem, the elements /79
of the matrix ¢/ were obtained using integration by means of the Gauss method
[13]. The points where a change of direction took place were determined in each

stepwith an accuracy to within 0.1 ~ 0.0l seconds.

The calculations that were performed have shown that the proposed

algorithm for finding the optimum program of measurements is highly efficient.

In conclusion, the author wishes to take advantage of this opportunity
and express his deep appreciation to T. M. Eneyev for having formulated the
problem, his constant attention given to this work, and a great deal of

help obtained from him.
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